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Abstract: Modular assembly routes to cyclic hydropyran oligolides of diverse structures are described.
Macrolactonization of the appropriate tris(hydropyran) hydroxy acid provided compounds 1-8, whereas
macrocycles 9-13 resulted from the cyclodimerization, cyclotrimerization, and cyclotetramerization of the
bis- or tris(thydropyran) seco acids, utilizing the "normal” or "modified" Yamaguchi lactonization
conditions.

The design, synthesis, and study of ligand arrays for ionic and molecular recognition, transport, and
sequestration are of continuing importance.! These efforts serve as excellent tests of current computational,
preparative, structural, and analytical methods and are of broad chemical and biological relevance.2 They are
especially pertinent to the study of non-covalent interactions as structural determinants in hosts and host-guest
complexes.3 In this context, we have been investigating cyclic oligolides of hydropyran subunits as versatile ligand
arrays.4 Described in this paper are: 1) synthetic routes to cyclic hydropyran oligolides with 18-, 24-, 36-, 48-,
54-, and 72-membered rings; and 2) a striking temperature dependence in ring size selectivity.

1, R=Me, R'=H, X-X=CH=CH
2,R=H, R'=Me, X-X=CH=CH
3,R=Me, R =H, X-X=CHyCH,
4 R=H, R'=Me, X-X=CHyCH,
5,R=Ph, R =H, X-X=CH=CH
6,R=H, R'=Ph, X-X=CH=CH
7,R=Ph, R =H, X-X=CHyCHy
8 R=H, R'=Ph, X-X=CHyCH,

Specific hydropyran cyclic oligolides made and studied are the 18-membered ring triolides 1-8 (Fig. 1),
prepared enantiomerically pure from lactic or mandelic acid esters, and the larger oligolides 9-13 (Fig. 2), all based
upon a lactate-derived hydropyran module. Each representative of the first group was synthesized by an iterative
sequence in which hydropyran hydroxy acid derivatives were linked via esterification reactions. The second group
(Fig. 2) resulted from cyclooligomerizations of bis- and tris(hydropyran) hydroxy acids.

Conversion of protected lactate (14) or mandelate (15) estersS to dihydropyran modules 16-19 was
accomplished via methods described previously,5.7 as outlined in eq 1. All of these modules are depicted in the
same enantiomeric series for comparison,® because the consequential difference? rests in the relative
stereochemistry at the off-ring stereogenic center marked (*).
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An illustration of the iterative, stepwise linking of hydropyran modules for construction of macrotriolides 1-8
(Fig. 1) is presented in Scheme I. Dihydropyran carboxylic acid module 18 is utilized three times in this sequence,
beginning with the first of four Keck-Steglich (K-S) esterifications10 to give the trichloroethyl ester 20. Cleavage
of the (B-trimethylsilyl)ethoxymethyl (SEM) ether!! afforded hydroxy ester 21, which was coupled with acid 18 to
give pseudodimer 22. SEM-ether cleavage unmasked alcohol 23, which gave the pseudotrimer 24 upon K-S
coupling with module 18. Cleavage of both alcohol and acid!? protecting groups (24—25->26) and
intramolecular K-S coupling gave the crystalline macrotriolide 5, with the ring closure proceeding in a noteworthy
95% yield. Saturation of the double bonds in 5 via catalytic hydrogenation afforded the hexahydro analogue 7.13

«Me
' (eq )
— R o]
R‘ut
OR" OH

14, R=H, R' = Me, R" = BOM 16, R = H, R' = Me, R" = BOM

15, R=Ph, R'= H, R" = SEM 17, R = Me, R' = H, R" = BOM
18, R=Ph, R'=H, R" = SEM
19, R =H, R' = Ph, R" = SEM

Pseudotrimeric seco acid 27 (eq 2) exhibited intriguing reactivity upon subjection to the Yamaguchi
lactonization protocol.!4 Subjection of the derived mixed anhydride 28 to "normal” Yamaguchi conditions (entry 1,
Table) yielded a 3.5:1 separable mixture of the expected 18-membered triolide 2 and the 36-membered hexalide
10.15 Because such larger cyclic oligolides are not readily available via the iterative sequence discussed earlier, it
was hoped that the fortuitous tendency of 28 to dimerize could be enhanced and exploited.! Based upon the
assumption that dimerization to the larger ring is the entropically less-favored pathway, it was reasoned that the yield
of 10 might increase if lactonization was attempted at lower temperature.!” In the event (entry 2), a gratifying
reversal of product ratio was observed upon cyclization at room temperature, with the cyclodimerization product 10
(52%) favored by 4:1 over triolide 2. Furthermore, conditions were developed (entries 3 and 4) by which
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_X_Me b 22, R = SEM 24, R = SEM, R' = CH,CCly
)j\fo %23 R -1 ‘93%’ l:zs, R =H, R' = CHyCCls
0

(95%)
Me.. 0 07 X Reagents and conditions:
Xe_ o >’( (a) 2,2,2-trichlorocethanocl, DIC, DMAP, DMAPTFA,
XN T(l\/ CHCly, 32 °C. (b) LiBF4, wet CHaCN, 80 °C. (c) 18,
ﬁh fe) I\:lle DIC, DMAP, DMAPSTFA, CH,Clp, RT. (d) 5:1 THF-1M aq
f 5, X-X = CH=CH NH4OAc, Zn dust, 23 °C. (a) DMAP, DMAPTFA, DIC,
7 Ler xx CHCH CHCls, 40 °C. (f) PA(OH),/C, Ha, EtOAC, 23 °C.
y AR = 2

cyclotrimerization and cyclotetramerization products 12 and 13 (Fig. 2) were formed directly. Entry 4 is
especially intriguing, in that the 36-, 54- and 72-membered!8 oligomerization products are each formed in
significantly greater quantities than the triolide 2. Similarly, cyclodimerization, -trimerization, and -tetramerization
of the bisthydropyran) hydroxy acid 29 afforded, respectively, the 24-, 36-, and 48-membered oligolides 9, 10,
and 11,15

Z «~Me
M
0.~0 o Conditions
see table
{see table) 2+10+12+13 (eg2)
Me.
.
Me O Me
27,R=H,n=1
28, R = 2,4,6-trichiorobenzoyl, n = 1
29, R=H,n=0

Table: Macrolactonization of 27 under “normal”!4 and "modified"172 Yamaguchi conditions.

Reaction Conditions Product Distributions(%
Imitial Catalyst | Temp Mass
Entry| [28]mM| Solvent | (°C) | 2 10 [12 | 13 |balance
1 0.98 DMAP? | 111 | 61 17 | — — 78
toluene
2 1.00 DMAP 22 13 152 1— | — 1|65
toluene
3 |10 DMAP (22 |8 |16 [ — [62
xylenes
4 10 4-PPYb |22 [ 3 31 |19 20 |73
o-xylene}] 70

aDMAP = 4-(dimethylamino)pyridine ~ DPPY = 4-pyrrolodinopyridine
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Conformational effects significantly influence the facility and mode of cyclization in these poly(hydropyran)

seco acids. Ring closures yielding 1 and § proceeded in higher yields (93%, 95%) than those in the diastereomeric

series leading to 2 and 6 (78%, 61%). Moreover, the seco acid precursor to 1 did not share the pronounced

tendency to cyclooligomerize exhibited by diastereomeric seco acid 27 under modified Yamaguchi lactonization

conditions (eq 2, Table). Observations and interpretations that clarify the relationships between structure, reactivity,

and function in these synthetic macrocycles and their precursors will be presented elsewhere.4b
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